С помощю этого онлайн калькулятора можно найти арксинус и арккосинус от числа. Результат можно видеть как в градусах, так и в радианах. Теоретическую часть и численные примеры смотрите ниже.
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Как известно, функция синус определена в интервале [−∞;+∞] и не является монотонной функцией (т.е. не является возрастающей или убывающей во всей области определения функции (Рис.1) (подробнее о функции синус смотрите на странице Синус и косинус. Онлайн калькулятор). А для того, чтобы функция имела обратную, она должна быть монотонной.
Однако, функцию синус можно разделить на интервалы, где она монотонна. Эти интервалы:
,,, и т.д. |
По теореме об обратной функции, на каждом из указанных отрезков функция sin x имеет обратную функцию. Отметим, что это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке . Обратную функцию обозначают x=arcsin y. Поменяв местами x и y, получим:
y=arcsin x. | (1) |
Функция (1) − это функция, обратная к функции
. |
График функции арксинус можно получить из графика функции с помощью преобразования симметрии относительно прямой y=x (Рис.2).
Свойства функции арксинус.
Решим тригонометрическое уравнение
sin t=a. | (2) |
При |a|>1 это уравнение не имеет решения, т.к. не существует такое число x, при котором sin x>1 (см. график функции синус (Рис.1). При |a|≤1, в отрезке (дуга DAB) уравнение (2) имеет одно решение (см. Рис.3):
. |
В отрезке (дуга DCB) функция синус убывает и принимает значения от 1 до −1. Следовательно в этом отрезке уравнение (2) также имеет решение:
. |
Действительно:
. |
А из
следует
, |
, |
т.е.
. |
Таким образом уравнение (3) имеет два решения в отрезке :
которые совпадают при |a|=1.
Поскольку функция синус периодичная с основным периодом 2π, имеем
Тогда получим решение (2) в виде
, | (3) |
. | (4) |
Решения (3) и (4) удобно представить одним уравнением:
. | (5) |
Действительно. При четных k (k=2n) из уравнения (5) получают все решения, представленные уравнением (3), а при нечетных k (k=2n+1) − все решения, представленные уравнением (4).
При a=1, arcsin a и π−arcsin a совпадают (т.к. ), следовательно решение уравнения sin t=1 имеет вид:
. |
При |a|=−1, из (3) и (4) следует:
, | (6) |
. | (7) |
Но поворот эквивалентно повороту . То есть уравнения (6) и (7) эквивалентны. Тогда решение уравнения sin t=−1 запишем в виде:
. |
При |a|=0, из (3) и (4) имеем следующее решение уравнения sin t=0:
. |
Пример 1. Решить тригонометрическое уравнение:
. |
Решение. Воспользуемся формулой (5):
, |
т.е.
. |
Пример 2. Решить тригонометрическое уравнение:
. |
Решение. Воспользуемся формулой (5):
, |
т.е.
. |
Как известно, функция косинус определена в интервале [−∞;+∞] и не является монотонной функцией (Рис.4) (подробнее о функции косинус смотрите на странице Синус и косинус. Онлайн калькулятор). А для того, чтобы функция имела обратную, она должна быть монотонной.
Однако, функцию косинус можно разделить на интервалы, где она монотонна. Эти интервалы:
,,, и т.д. |
По теореме об обратной функции, на каждом из указанных отрезков функция cos x имеет обратную функцию. Это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке . Обратную функцию оброзначают x=arccos y. Поменяв местами x и y, получим:
y=arccos x. | (8) |
Функция (8) − это функция, обратная к функции
. |
График функции арксинус можно получить из графика функции с помощью преобразования симметрии относительно прямой y=x (Рис.5).
Свойства функции арксинус.
Решим тригонометрическое уравнение
cos t=a. | (9) |
При |a|>1 это уравнение не имеет решения, т.к. не существует такое число x, при котором cos x>1 (см. график функции косинус (Рис.4). При |a|≤1, в отрезке [0; π] (дуга ABC) уравнение (9) имеет одно решение t1=arccos a. В отрезке [−π; 0] (дуга CDA) уравнение (9) имеет одно решение t2=−arccos a(см. Рис.6):
Таким образом, в интервале [−π; π] уравнение (9) имеет два решения y=± arccos a, которые совпадают при a=1.
Поскольку функция косинус периодичная с основным периодом 2π:
то общее решение (9) имеет следующий вид:
(10) |
При a=1, числа arccos a и −arccos a совпадают (они равны нулю), тогда решение уравнения cos t=1 можно записать так:
t=2πn, n∈Z. |
При a=−1, имеем cos t=−1,
t=π+2πn, n∈Z |
При a=0, имеем cos t=0,
(11) |
(12) |
Решение тригонометрического уравнения cos t=0 можно записать одним уравнением:
Пример 1. Решить тригонометрическое уравнение:
. |
Решение. Воcпользуемся формулой (10):
. |
Так как , то
. |
Пример 2. Решить следующее тригонометрическое уравнение:
. |
Решение. Используя формулу (10), имеем
. |
Так как (), то
. |
Пример 3. Решить следующее тригонометрическое уравнение:
. |
Решение. Используя формулу (10), имеем
. |
С помощью онлайн калькулятора вычисляем : . Тогда решение можно записать так:
. |