С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через данную точку и перпендикуляной данной прямой. Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямой (канонический или параметрический) введите координаты точки и коэффициенты уравнения прямой в ячейки и нажимайте на кнопку "Решить".
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Задана точка M0(x0, y0, z0) и прямая L:
. | (1) |
Построить уравнение плоскости α, проходящей через точку M0 и перпендинулярной прямой L.
Решение. Уравнение плоскости, проходящей через точку M0 и имеющий нормальный вектор n={A, B, C} имеет следующий вид:
A(x−x0)+B(y−y0)+C(z−z0)=0. | (2) |
Направляющий вектор прямой L имеет вид q={m, p, l}. Поскольку прямая L и плоскость α перпендикулярны друг другу, следовательно нормальный вектор плоскостти и направляющий вектор прямой должны быть коллинеарны (Рис.1). Тогда вместо координат нормального вектора плоскости нужно подставить координаты направляющего вектора прямой L. Получим следующее уравнение плоскости:
m(x−x0)+p(y−y0)+l(z−z0)=0. | (3) |
Упростим уравнение (3):
mx+py+lz+D=0, | (4) |
где D=−mx0−px0−lx0.
Таким образом уравнение (4) определяет плоскость, проходящей через точку M0(x0, y0, z0) и перпендикулярной прямой (1).
Ответ. Уравнение плоскости прпоходящей через точку M0(x0, y0, z0) и перпендикулярной прямой (1) имеет вид (4).
Пример 1. Найти уравнение плоскости α, проходящую через точку M0(3, −1, 2) и перпендикулярной прямой L:
(7) |
Решение. Уравнение плоскости α, проходящей через точку M0(x0, y0, z0) и имеющий нормальный вектор n={A, B, C} представляется формулой (2).
Направляющий вектор прямой L имеет следующий вид: :
q={m, p, l}={2, 5, 4} |
Для того, чтобы прямая L была перпендикулярна плоскости α, нормальный вектор плоскости α должен быть коллинеарным направляющему вектору прямой L, т.е. уравнение плоскости (2) примет следующий вид:
m(x−x0)+p(y−y0)+l(z−z0)=0. | (8) |
Подставляя координаты точки M0 и направляющего вектора q в (8), получим:
(9) |
Упростим уравнение (9):
2x+5y+4z−9=0. | (10) |
Ответ: Уравнение плоскости, проходящей через точку M0(3, −1, 2) и перпендикулярной прямой (7) имеет вид (10).
Пример 2. Найти уравнение плоскости α, проходящую через точку M0(4, 3, −6) и перпендикулярной прямой L, заданной параметрическим уравнением:
(11) |
Решение. Приведем параметрическое уравнение (11) к каноническому виду:
(11') |
Уравнение плоскости α, проходящей через точку M0(x0, y0, z0) и имеющий нормальный вектор n={A, B, C} представляется формулой:
A(x−x0)+B(y−y0)+C(z−z0)=0. | (12) |
Направляющий вектор прямой L имеет следующий вид:
q={m, p, l}={−5, 3, 11} |
Для того, чтобы прямая L была перпендикулярна плоскости α, нормальный вектор плоскости α должен быть коллинеарным направляющему вектору прямой L, т.е. уравнение плоскости (12) примет следующий вид:
m(x−x0)+p(y−y0)+l(z−z0)=0. | (13) |
Подставляя координаты точки M0 и направляющего вектора q в (13), получим:
Упростим уравнение (13):
−5x+3y+11z+77=0. | (14) |
Ответ. Уравнение плоскости, проходящей через точку M0(4, 3, −6) и перпендикулярной прямой (11) имеет вид (14).