В данной статье мы рассмотрим параметрическое уравнение прямой на плоскости. Приведем примеры построения параметрического уравнения прямой, если известны две точки этой прямой или если известна одна точка и направляющий вектор этой прямой. Представим методы преобразования уравнения в параметрическом виде в канонический и общий виды.
Параметрическое уравнение прямой L на плоскости представляется следующей формулой:
(1) |
где x1, y1 координаты некоторой точки M1 на прямой L. Вектор q={m, p} является направляющим вектором прямой L, t − некоторый параметр.
Отметим что при записи уравнения прямой в параметрическом виде, направляющий вектор прямой не должен быть нулевым вектором, т.е хотя бы один координат направляющего вектора q должен быть отличным от нуля.
Для построения прямой на плоскости в декартовой прямоугольной системе координат, заданной параметрическим уравнением (1), достаточно задать параметру t две разные значения, вычислить x и y и провести через эти точки прямую линию. При t=0 имеем точку M1(x1, y1) при t=1, получим точку M2(x1+m, y1+p).
Для составления параметрического уравнения прямой на плоскости L достаточно иметь точку на прямой L и направляющий вектор прямой или две точки, принадлежащие прямой L. В первом случае, для построения параметрического уравнения прямой нужно координаты точки и направляющего вектора вставить в уравнение (1). Во втором случае сначала нужно найти направляющий вектор прямой q={m, p}, вычисляя разности соответствующих координатов точек M1 и M2: m=x2−x1, p=y2−y1(Рис.1). Далее, аналогично первому случаю, подставить координаты одной из точек (не имеет значение какой именно) и направляющего вектора q прямой в (1).
Можно также вывести формулу параметрического уравнения прямой, проходящей через две точки. Для этого подставим значения m=x2−x1, p=y2−y1 в (1), получим параметрическое уравнение прямой на плоскости, проходящей через точки M1(x1, y1) и M2(x2, y2):
(2) |
Пример 1. Прямая проходит через точку M=(3,−1) и имеет направляющий вектор q={−3, 5}. Построить параметрическое уравнение прямой.
Решение. Для построения параметрического уравнения прямой, подставим координаты точки и направляющего вектора в уравнение (1):
Ответ:
Пример 2. Прямая проходит через точки M1=(−5, 2) и M2=(−2, 3). Построить параметрическое уравнение прямой.
Решение. Воспользуемся формулой (2). Подставим координаты точек M1 и M2 в уравнение (2):
Упростим полученное уравнение:
Ответ:
Выразим параметр t в (1) через переменные x и y:
(3) |
Из выражений (3), можем записать каноническое уравнение прямой на плоскости:
. | (4) |
Обратное преобразование смотрите здесь.
Пример 3. Прямая на плоскости представлена следующим параметрческим уравнением:
Привести данное уравнение прямой к каноническому виду.
Решение: Выразим параметр t через переменные x и y:
(5) |
Из выражений (5), можем записать:
Ответ.
Для приведения параметрического уравнения прямой на плоскости к общему виду, в формулах (1) выразим из второго уравнения параметр t через переменную y и подставим в первое уравнение:
(6) |
Умножим обе части уравнения (6) на p и группируем элементы уравнения:
. | (7) |
Сделаем обозначения: A=p, B=−m, C=−px1+my1. Тогда получим общее уравнение прямой:
Ax+By+C=0. | (8) |
Обратное преобразование смотрите здесь.
Пример 4. Прямая на плоскости представлена следующим параметрческим уравнением:
(9) |
Привести данное уравнение прямой к общему виду.
Решение: В уравнении (9) имеем: x1=−5, y1=0, m=4, p=−2. Подставим эти значения в формулу (7):
(10) |
Упростив выражение (10) получим общее уравнение прямой (9):
Ответ.